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Abstract

waveguide bends of nonuniform curvature is determined by employing modal expansions for
annular waveguides, For large curvature waveguide bends an iterative method is suitable only
modal analysis.

Introduction

Using a method attributed to Schelkunoffl, the
electromagnetic fields in nonuniform waveguides are
derived by converting Maxwell’s equations into a
complet,e set of coupled transmission-line equations
referred to as “generalized telegraphist’s equations.”
The dependent variablea in these first-order coupled
differential equations are the forward and backward
waveguide mode amplitudes an and bn respectively.

The method is based on the expansion of the
transverse components of the electromagnetic fields
at any cross-section of the nonuniform waveguide in
terms of a complete modal expansion. Thus, for wave-

guide bends of rectangular cross-section, it is
possible to express the fields at any cross-section

normal to the center line of the wave uide, in terms
of local rectangular waveguide modes, ! or in terms
of local annular waveguide modes. 3

The solutions of the electromagnetic fields at
any cross-section should not depend on the particular

modal analysia used, however the set of coupled

differential equations for the wave amplitudes depend
upon the modal expanaion. In general, the coupling

coefficients in these equations depend upon the center
line coordinate of the waveguide. Thus unless the
power associated with the spurioue modes at any cross-

section is small compared to the incident power it is
necessary to employ sophisticated numerical methods
to derive satisfactory solutions to the coupled

differential equation. However if the power associated
with the spurious modes at any cross-section of the

waveguide is small, a simple first-order iterative

approach to solve the coupled differential equations
is found to be very suitable.

Illustrative Examples

H-plane waveguide bends with sinusoidal shaped
center lines and uniform rectangular waveguide porta
are analyzed using both the rectangular and the
annular modal expansions (See insert Fig. 1). The
incident field at the input port (~=0) ia assumed to
be the principal TE1,O mode of unit amplitude,

a~(o)=l. The basis functions are normalized such that

the incident power in this case is unity.4 The width
of the waveguide is a=l.75A and the centerline of the

waveguide bend is given by the expression
h(~) = (w/i’r)sin(m~/w), (1)

thus we are considering 90° bende. A fourth-order

Runge-Kutta numerical method Is used to solve the

resulting coupled differential equations and these
are compared with the first-order iterative

solutione.
In Figs. 1 and 2 first-order iterative solutions

for the complex amplitude of the TE2,0 mode,a2(0, are
plotted as a function of the normalized distance C/w.
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c
a2(fj)=a1(o)exp{-i f K2(u)du} ~ S (u)

o 21
0

.exp{i ~ [K2(w)-K1(w)]dw}du

o

(2)

where ~ is related to the propagation coefficients
and S21(U) is the TE1,O to TE2,0 mode cOuPling

coefficient for forward propagating waves. For wave-
guide benda with small curvatures (w/a=14, Fig. 1),

both the iterative solutions (using the rectangular
and the annular modal analysis) agree with the Runge-

Kutta solution. However for waveguide bends with
large curvatures (w/a=6, Fig. 2) the power associated
with the spurious modes near the center of the bend
is larger than the power retained in the incident

mode if the rectangular modal expaneion is used.

Thus the iterative approach fails in these caaea.

But, for the same caaes, the iterative method is

suitable provided that the annular modal expansion is
used. Since local elementary annular waveguides fit

the geometry of the waveguide bends better than
elementary rectangular waveguides it is shown that
mode coupling is significantly smaller when the

annular modal expansion is used. Hence using the
annular modal analysis the power associated with the

spurious modes is small compared to the incident power
at any transverse plane of the waveguide bend.

In Figs. 3 and 4 we plot the loci of the phasor

A2(v), where ,., .,

A2(v)=a1(o)exp{-i~ K2(u)du} ~ S21(u)

o 0

.exp{i~ [K2(w)-K1(w)]dw}du
o

(3)

and AA2=A2(V+A)-A2(V) represents the contribution to
the spurious mode amplitude a2(w) originating from the

section of waveguide between ~=v and ~=v+Av(measured
along the center line). At the origin (Fig. 3 and 4)
v=() and at the end point of the loci V=W, hence

A2(w)=a2(w). Figurea 3 and 4 graphically ahow that the
coupling per unit length of the waveguide bend is much

larger when the rectangular modal analyaia is used as

compared with the annular modal analysis. However, as
a result of destructive interference, the net contri-

bution to mode TE2 o at the output of the waveguide,
as derived from bo?h analyses, is the same.
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First-order iterative solutions for the TE2 mode amplitude, a2(~).

Circles, rectangular modal analysis; crosae&~ annular modal analysis, w/a=14.
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Fig. 2 First-order iterative solutions for the TE2,0
Circles, rectangular modal analysis; crosses,
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mode amplitude, a2(5).
annular modal analyeis, wla=6.
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Fig. 3 Loci of A2(v) using the rectangular modal analysis.
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Fig. .4 LOCi of A2@) using the annular modal aIIa@.k.
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