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Abstract

Coupling in waveguide bends of nonuniform curvature is determined by employing modal expansions for
rectangular and annular waveguides. For large curvature waveguide bends an iterative method is suitable only

for the annular modal analysis.
Introduction

Using a method attributed to Schelkunoffl, the
electromagnetic fields in nonuniform waveguldes are
derived by converting Maxwell's equations into a
complete set of coupled transmission-line equations
referred to as ''generalized telegraphist's equations."
The dependent variables in these first-order coupled
differential equations are the forward and backward
waveguide mode amplitudes a, and bp respectively.

The method is based on the expansion of the
transverse components of the electromagnetic fields
at any cross-section of the nonuniform waveguide in
terms of a complete modal expansion. Thus, for wave-
guide bends of rectangular cross-section, it is
possible to express the flelds at any cross-—section
normal to the center line of the waveguide, in terms
of local rectangular waveguide modes,4 or in terms
of local annular waveguide modes.

The solutions of the electromagnetic filelds at
any cross-section should not depend on the particular
modal analysis used, however the set of coupled
differential equations for the wave amplitudes depend
upon the modal expansion. In general, the coupling
coefficients in these equations depend upon the center
line coordinate of the waveguide. Thus unless the
power associated with the spurious modes at any cross-
section is small compared to the incident power it is
necessary to employ sophisticated numerical methods
to derive satisfactory solutions to the coupled
differential equation. However if the power assoclated
with the gpurious modes at any cross-section of the
wavegulde 1s small, a simple first-order iterative
approach to solve the coupled differential equatioms
is found to be very suitable.

Illustrative Examples

H-plane waveguide bends with sinusoidal shaped
center lines and uniform rectangular waveguide ports
are analyzed using both the rectangular and the
annular modal expansions (See insert Fig. 1). The
incident field at the input port (£=0) is assumed to
be the principal TE]_’o mode of unit amplitude,
aj(o)=1. The basis functions are normalized such that
the incident power in this case is unity.4 The width
of the wavegulde is a=1.75)A and the centerline of the
waveguide bend is given by the expression

h(g) = (w/m)sin(ng/w), (&3]
thus we are considering 90° bends. A fourth-order
Runge-Kutta numerical method is wused to solve the
resulting coupled differential equations and these
are compared with the first-—order iterative
solutions.

In Figs. 1 and 2 first~order iterative solutions
for the complex amplitude of the TE7, 0 mode,az(i), are
plotted as a function of the normalized distance &/w.
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where K, is related to the propagation coefficients
and S97(u) 1is the TE],o to TE2,0 mode coupling
coefficient for forward propagating waves. For wave-
guide bends with small curvatures (w/a=14, Fig. 1),
both the iterative solutions (using the rectangular
and the annular modal analysis) agree with the Runge-
Kutta solution. However for waveguide bends with
large curvatures (w/a=6, Fig. 2) the power assoclated
with the spurious modes near the center of the bend
is larger than the power retained in the incident
mode 1if the rectangular modal expansion is used.
Thus the iterative approach fails in these cases.
But, for the same cases, the iterative method is
suitable provided that the annular modal expansion is
used. Since local elementary annular waveguides fit
the geometry of the waveguide bends better than
elementary rectangular waveguides it is shown that
mode coupling is significantly smaller when the
annular modal expansion is used. Hence using the
annular modal analysis the power associlated with the
spurious modes is small compared to the incident power
at any transverse plane of the wavegulde bend.

In Figs. 3 and 4 we plot the loci of the phasor
Ay (v), where

w
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and AA2=A2(v+A)-A2(v) represents the contribution to
the spurious mode amplitude az(w) originating from the
section of wavegulde between &=v and E=v+Av(measured
along the center line). At the origin (Fig. 3 and 4)
v=0 and at the end point of the loci v=w, hence
Az(w)=a2(w). Figures 3 and 4 graphically show that the
coupling per unit length of the waveguide bend is much
larger when the rectangular modal analysis is used as
compared with the annular modal analysis. However, as
a result of destructive interference, the net contri-
bution to mode TEp , at the output of the waveguide,
as derived from both analyses, is the same.
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Fig. 1 TFirst-order iterative solutions for the TE2 o mode amplitude, aj(&).
Circles, rectangular modal analysis; crossed, annular modal analysis, w/a=l14.
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Fig. 2 First-order iterative solutions for the TEZ,o mode amplitude, az(E).
. Circles, rectangular modal analysis; crosses, annular modal analysis, w/a=6,
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Fig. 3 Loci of Az(v) using the rectangular modal analysis.
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Fig. 4 Loci of Az(v) using the annular modal analysis.
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